Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 14(8)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38668226

RESUMO

The van der Waals epitaxy of wafer-scale GaN on 2D MoS2 and the integration of GaN/MoS2 heterostructures were investigated in this report. GaN films have been successfully grown on 2D MoS2 layers using three different Ga fluxes via a plasma-assisted molecular beam epitaxy (PA-MBE) system. The substrate for the growth was a few-layer 2D MoS2 deposited on sapphire using chemical vapor deposition (CVD). Three different Ga fluxes were provided by the gallium source of the K-cell at temperatures of 825, 875, and 925 °C, respectively. After the growth, RHEED, HR-XRD, and TEM were conducted to study the crystal structure of GaN films. The surface morphology was obtained using FE-SEM and AFM. Chemical composition was confirmed by XPS and EDS. Raman and PL spectra were carried out to investigate the optical properties of GaN films. According to the characterizations of GaN films, the van der Waals epitaxial growth mechanism of GaN films changed from 3D to 2D with the increase in Ga flux, provided by higher temperatures of the K-cell. GaN films grown at 750 °C for 3 h with a K-cell temperature of 925 °C demonstrated the greatest crystal quality, chemical composition, and optical properties. The heterostructure of 3D GaN on 2D MoS2 was integrated successfully using the low-temperature PA-MBE technique, which could be applied to novel electronics and optoelectronics.

2.
Molecules ; 29(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542948

RESUMO

Boron nitride (BN) is a wide-bandgap material for various applications in modern nanotechnologies. In the technology of material science, computational calculations are prerequisites for experimental works, enabling precise property prediction and guidance. First-principles methods such as density functional theory (DFT) are capable of capturing the accurate physical properties of materials. However, they are limited to very small nanoparticle sizes (<2 nm in diameter) due to their computational costs. In this study, we present, for the first time, an important computational approach to DFT calculations for BN materials deposited on different substrates. In particular, we predict the total energy and cohesive energy of a variety of face-centered cubic (FCC) and hexagonal close-packed (HCP) boron nitrides on different substrates (Ni, MoS2, and Al2O3). Hexagonal boron nitride (h-BN) is the most stable phase according to our DFT calculation of cohesive energy. Moreover, an experimental validation equipped with a molecular beam epitaxy system for the epitaxial growth of h-BN nanodots on Ni and MoS2 substrates is proposed to confirm the results of the DFT calculations in this report.

3.
Discov Nano ; 18(1): 60, 2023 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-37382746

RESUMO

The droplet epitaxy of indium gallium nitride quantum dots (InGaN QDs), the formation of In-Ga alloy droplets in ultra-high vacuum and then surface nitridation by plasma treatment, is firstly investigated by using plasma-assisted molecular beam epitaxy. During the droplet epitaxy process, in-situ reflection high energy electron diffraction patterns performs the amorphous In-Ga alloy droplets transform to polycrystalline InGaN QDs, which are also confirmed by the characterizations of transmission electron microscopy and X-ray photoelectron spectroscopy. The substrate temperature, In-Ga droplet deposition time, and duration of nitridation are set as parameters to study the growth mechanism of InGaN QDs on Si. Self-assembled InGaN QDs with a density of 1.33 × 1011 cm-2 and an average size of 13.3 ± 3 nm can be obtained at the growth temperature of 350 °C. The photoluminescence emissions of uncapped InGaN QDs in wavelength of the visible red (715 nm) and infrared region (795 and 857 nm) are observed. The formation of high-indium composition of InGaN QDs via droplet epitaxy technique could be applied in long wavelength optoelectronic devices.

4.
Polymers (Basel) ; 13(21)2021 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-34771404

RESUMO

In the current study, lignin, an abundant natural polymer, was dissolved in ethylene glycol and acidic H2O to form nanoscale lignin. Then, zero-valent iron (ZVI) nanoparticles were synthesized in nanoscale lignin, producing a nZVI/n-lignin composite, via the borohydride reduction method. The use of nZVI/n-lignin for environmental remediation was tested by the removal of methylene blue in aqueous solutions at room temperature. The nZVI/n-lignin composite achieved a higher methylene blue removal ratio than that achieved by traditional nZVIs. Moreover, its excellent dispersibility in water and stability against oxidation in the air were observed. The functions of the nanoscale lignin in the composite material are (1) prevention of further growth and aggregation of the nZVI nanoparticles, (2) protection of nZVI from serious oxidation by H2O/O2, and (3) allowing better dispersibility of nZVI in aqueous solutions. These three functions are important for the field applications of nZVI/n-lignin, namely, to travel long distances before making contact with environmental pollutants. The present method for producing nZVI/n-lignin is straightforward, and the combination of nZVI and lignin is an efficient and environmentally friendly material for environmental applications.

5.
Nanomaterials (Basel) ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073367

RESUMO

Van der Waals epitaxial GaN thin films on c-sapphire substrates with a sp2-bonded two-dimensional (2D) MoS2 buffer layer, prepared by pulse laser deposition, were investigated. Low temperature plasma-assisted molecular beam epitaxy (MBE) was successfully employed for the deposition of uniform and ~5 nm GaN thin films on layered 2D MoS2 at different substrate temperatures of 500, 600 and 700 °C, respectively. The surface morphology, surface chemical composition, crystal microstructure, and optical properties of the GaN thin films were identified experimentally by using both in situ and ex situ characterizations. During the MBE growth with a higher substrate temperature, the increased surface migration of atoms contributed to a better formation of the GaN/MoS2 heteroepitaxial structure. Therefore, the crystallinity and optical properties of GaN thin films can obviously be enhanced via the high temperature growth. Likewise, the surface morphology of GaN films can achieve a smoother and more stable chemical composition. Finally, due to the van der Waals bonding, the exfoliation of the heterostructure GaN/MoS2 can also be conducted and investigated by transmission electron microscopy. The largest granular structure with good crystallinity of the GaN thin films can be observed in the case of the high-temperature growth at 700 °C.

6.
Polymers (Basel) ; 12(6)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481643

RESUMO

In this study, flexible and low-cost graphite sheets modified by atmospheric pressure plasma jet are applied to reduced-graphene-oxide/polyaniline supercapacitors. Surface treatment by atmospheric pressure plasma jet can make the hydrophobic surface of graphite into a hydrophilic surface and improve the adhesion of the screen-printed reduced-graphene-oxide/polyaniline on the graphite sheets. After the fabrication of reduced-graphene-oxide/polyaniline supercapacitors with polyvinyl alcohol/H2SO4 gel electrolyte, pseudo-capacitance and electrical double capacitance can be clearly identified by the measurement of cyclic voltammetry. The fabricated supercapacitor exhibits specific capacitance value of 227.32 F/g and areal capacitance value of 28.37 mF/cm2 with a potential scan rate of 2 mV/s. Meanwhile, the capacitance retention rate can reach 86.9% after 1000-cycle cyclic voltammetry test. A light-emitting diode can be lit by the fabricated reduced-graphene-oxide/polyaniline supercapacitors, which confirms that the supercapacitors function well and can potentially be used in a circuit.

7.
RSC Adv ; 8(6): 2851-2857, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35541196

RESUMO

This study evaluates DC-pulse nitrogen atmospheric-pressure-plasma-jet processed carbon nanotube (CNT)-reduced graphene oxide (rGO) nanocomposites for gel-electrolyte supercapacitor applications. X-ray photoelectron spectroscopy (XPS) indicates decreased oxygen content (mainly, C-O bonding content) after nitrogen APPJ processing owing to the oxidation and vaporization of ethyl cellulose. Nitrogen APPJ processing introduces nitrogen doping and improves the hydrophilicity of the CNT-rGO nanocomposites. Raman analysis indicates that nitrogen APPJ processing introduces defects and/or surface functional groups on the nanocomposites. The processed CNT-rGO nanocomposites on carbon cloth are applied to the electrodes of H2SO4-polyvinyl alcohol (PVA) gel-electrolyte supercapacitors. The best achieved specific (areal) capacitance is 93.1 F g-1 (9.1 mF cm-2) with 15 s APPJ-processed CNT-rGO nanocomposite electrodes, as evaluated by cyclic voltammetry under a potential scan rate of 2 mV s-1. The addition of rGOs in CNTs in the nanoporous electrodes improves the supercapacitor performance.

8.
Nanoscale Res Lett ; 11(1): 241, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27142879

RESUMO

In this report, self-organized indium nitride nanodots have been grown on Si (111) by droplet epitaxy method and their density can reach as high as 2.83 × 10(11) cm(-2) for the growth at low temperature of 250 °C. Based on the in situ reflection high-energy electron diffraction, the surface condition, indium droplets, and the formation of InN nanodots are identified during the epitaxy. The X-ray photoelectron spectroscopy and photoluminescence measurements have shown the formation of InN nanodots as well. The growth mechanism of InN nanodots could be described via the characterizations of indium droplets and InN nanodots using scanning electron microscopy, atomic force microscopy, and transmission electron microscopy. The density of the InN nanodots was less than that of the In droplets due to the surface diffusion and desorption of atoms during the nitridation and annealing process. The average size and density of InN nanodots can be controlled by the substrate temperatures during the growth. For the growth at lower temperature, we obtained the higher density and smaller average size of InN nanodots. To minimize the total surface energy, the coarsening and some preferred orientations of InN nanodots were observed for the growth at high temperature.

9.
Nanoscale Res Lett ; 9(1): 682, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25593560

RESUMO

In this report, self-organized GaN nanodots have been grown on Si (111) by droplet epitaxy method, and their density can be controlled from 1.1 × 10(10) to 1.1 × 10(11) cm(-2) by various growth parameters, such as substrate temperatures for Ga droplet formation, the pre-nitridation treatment of Si substrate, the nitridation duration for GaN crystallization, and in situ annealing after GaN formation. Based on the characterization of in situ RHEED, we can observe the surface condition of Si and the formation of GaN nanodots on Si. The surface nitridaiton treatment at 600°C provides a-SiNx layer which makes higher density of GaN nanodots. Crystal GaN nanodots can be observed by the HRTEM. The surface composition of GaN nanodots can be analyzed by SPEM and µ-XPS with a synchrotron x-ray source. We can find GaN nanodots form by droplet epitaxy and then in situ annealing make higher-degree nitridation of GaN nanodots.

10.
Nanoscale Res Lett ; 6(1): 85, 2011 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-21711584

RESUMO

The surface morphology of Ge0.96Sn0.04/Si(100) heterostructures grown at temperatures from 250 to 450°C by atomic force microscopy (AFM) and scanning tunnel microscopy (STM) ex situ has been studied. The statistical data for the density of Ge0.96Sn0.04 nanodots (ND) depending on their lateral size have been obtained. Maximum density of ND (6 × 1011 cm-2) with the average lateral size of 7 nm can be obtained at 250°C. Relying on the reflection of high energy electron diffraction, AFM, and STM, it is concluded that molecular beam growth of Ge1-xSnx heterostructures with the small concentrations of Sn in the range of substrate temperatures from 250 to 450°C follows the Stranski-Krastanow mechanism. Based on the technique of recording diffractometry of high energy electrons during the process of epitaxy, the wetting layer thickness of Ge0.96Sn0.04 films is found to depend on the temperature of the substrate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...